

What's new in Hand Hygiene Literature?

Train the Trainers in Hand Hygiene

Faculty of Medicine, Geneva, Switzerland

Outline

- How has hygiene literature evolved over the years?
- What about the "HOW to handrub"?
- Can we improve hand hygiene monitoring?

Outline

- How has hygiene literature evolved over the years?
- What about the "HOW to handrub"?
- How can we improve hand hygiene monitoring?

Growth rates of modern science

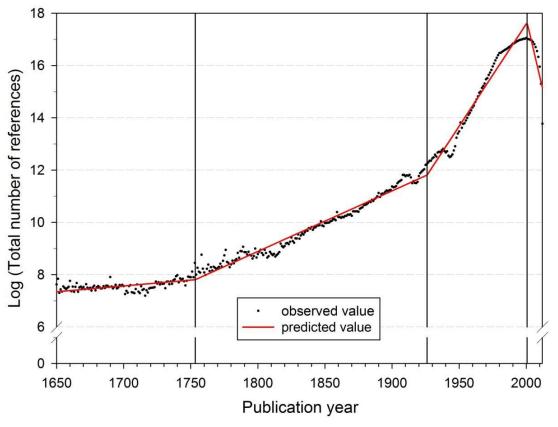
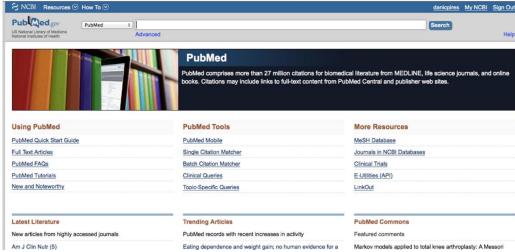


Figure 1. Segmented growth of the annual number of cited references from 1650 to 2012 (citing publications from 1980 to 2012)

Time-poor clinician suffering from Information Overload


"America's two greatest gifts to the world..."

U.S. National Library of Medicine

King Oliver's Creole Jazz Band, 1921

Most frequently used Mesh terms and keywords related to hand hygiene

MeSH terms	Keywords
Hand hygiene (2013)	Hand hygiene
Hand disinfection (1982)	Hand disinfection
Hand sanitizers (2014)	Hand sanitizers
	Handrubbing
	Hand washing
	Alcohol-based handrubs

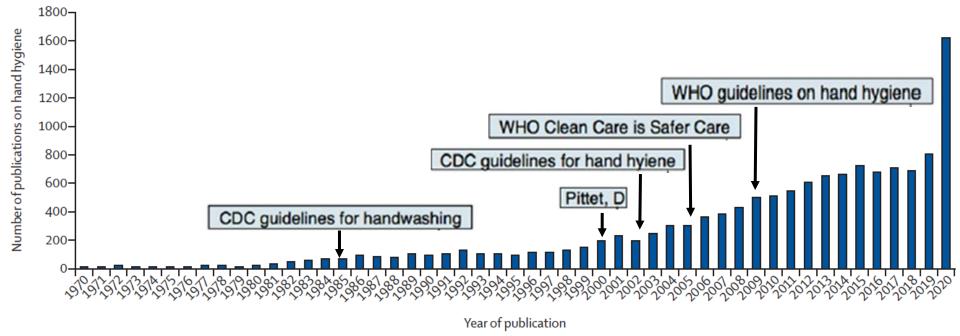
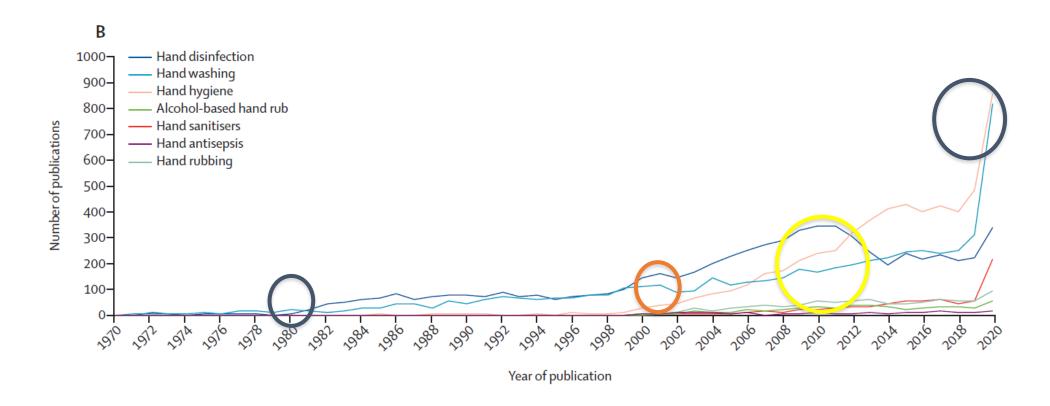
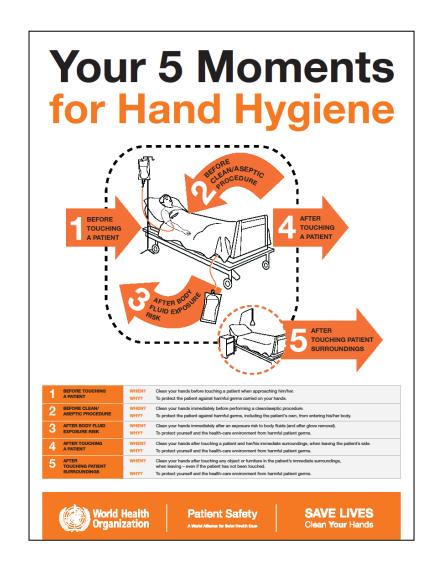
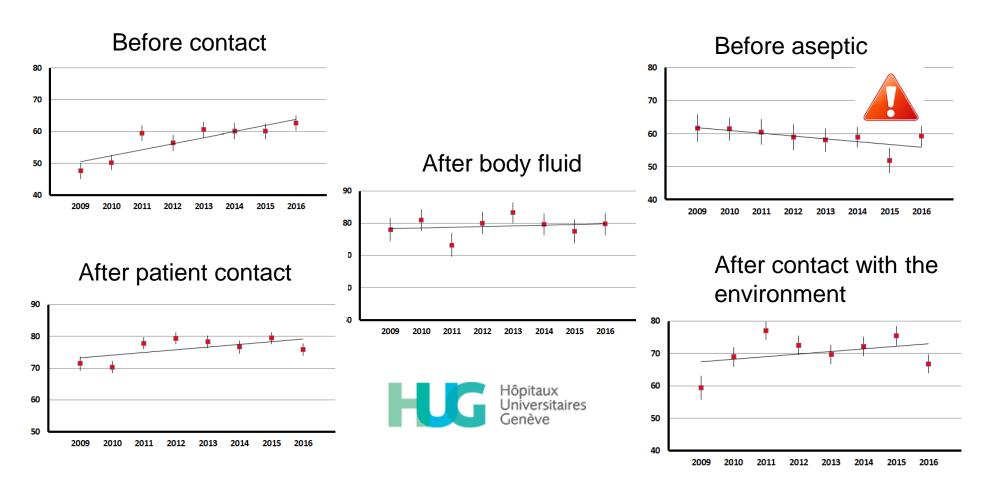



Figure 2: Number of publications on hand hygiene retrieved from MEDLINE by year, using Medical Subject Headings search terms and keywords from Jan 1, 1920, until Dec 31, 2020 Considering the scarcity of publications from the earlier years, we only presented data from 1970. (A) Number of publications on hand hygiene by year. The search detail retrieved for all keywords was: ("Hand Hygiene" [MeSH] OR "hand hygiene" OR "hand disinfection" [MeSH] OR "hand disinfection" [MeSH] OR "hand sanitizers" [MeSH] OR "hand sanitizers" [MeSH] OR "hand sanitizers" OR "hand washing" OR "hand washing" OR "hand cleans*" OR "hand cleans*" OR "hand cleaning" OR "alcohol-based hand rub*" OR "hand-antisep*" OR "surgical scrub*") AND (("1920/01/01" [Date-Publication])). (B) Trends in hand hygiene-related keywords used in medical literature. Search terms used were: "hand hygiene"; "hand disinf*"; "hand sanit*"; "hand washing" OR "handwashing" OR "hand wash"; "hand rub*" OR "handrubbing"; "alcohol-based hand rub*"; "hand-antisep*".

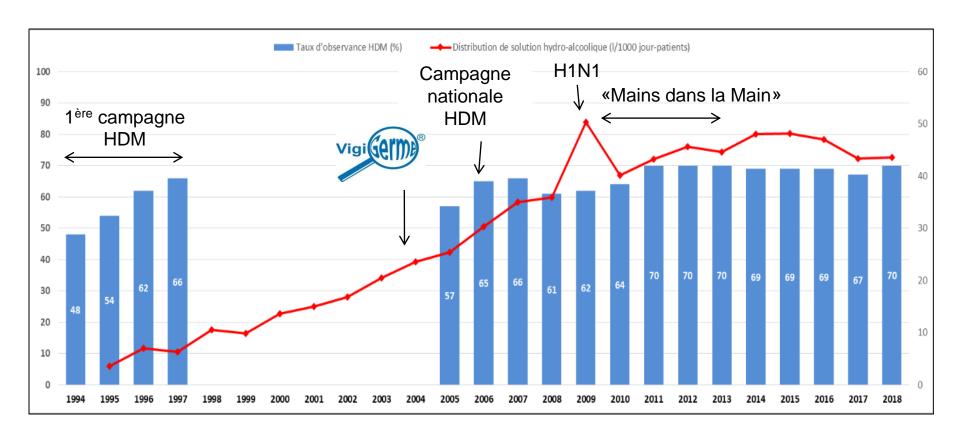

Other available resources

Outline

- How has hygiene literature evolved over the years?
- What about the "HOW to handrub"?
- How can we improve hand hygiene monitoring?


HH, it's all about WHEN and HOW!

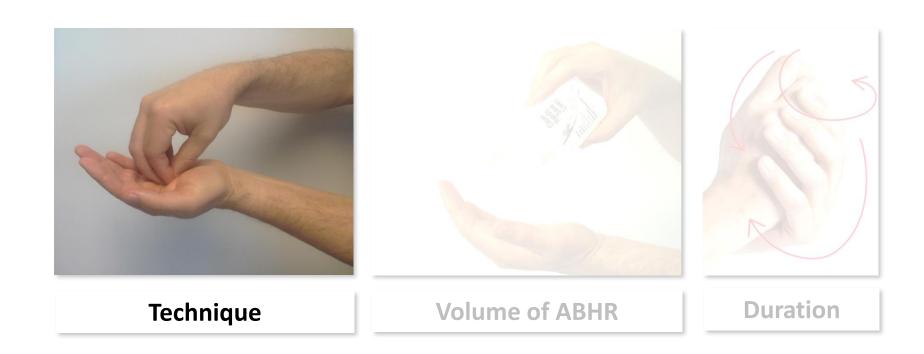
WHEN to handrub – focus on the 5 moments for hand hygiene



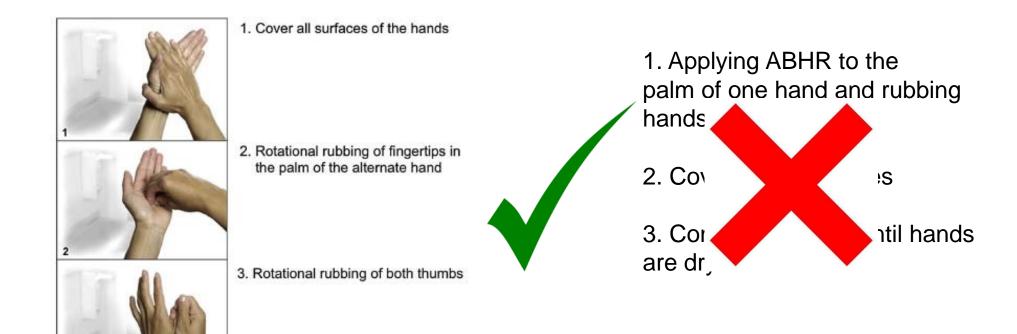
WHEN to handrub?

But what about the quality of the hand hygiene action (HOW)?

- Likely important to prevent HAI
- Imprecise recommendations
- Suboptimal adherence from HCWs
- Few national programs and HCFs have
 a monitoring tool for the quality of HH


HOW to handrub: Recommendations

	Technique	Volume	Duration
WHO 2009	 6 steps: « how to handrub » (poster) Palms 1st/ Fingertips 6th 	Palmfull	Until dry20 - 30 sec
CDC 2002	 Cover all surfaces of hands 	 According to indications by manufacturer 	Until dryIf dried before 10 sec, not enough volume
SFHH 2009	 7 steps Palms 1st/ Fingertips 6th Wrists 7th Each step 3 or 4 times 	 To cover all hand surfaces Between 1.5 and 3.0 ml 	Until dry
EN 1500 1997, 2013	 6 steps Palms 1st/ Fingertips 6th Each step 5 times 	■ 3 ml	■ 30 sec


HOW to handrub: in practice

	Technique	Volume	Duration
Sickbert-Bennett EE <i>et al. AJIC 2005</i>			12 sec
Widmer AF <i>et al.</i> ICHE 2007	6 steps technique 31% compliance	3 ml 54% compliance	30 sec 61% compliance
Pittet D <i>et al.</i> ICHE 2009			5 to 24 sec
Stewardson AJ et al. PLoS One 2014	6 steps technique 0% compliance		
Tschudin-Sutter S, et al. ICHE 2015	6 steps technique 8.5% compliance		
Leslie RA <i>et al.</i> ARIC 2015		1 ml	
Pittet <i>et al.</i> Unpublished data 2016		1.6 mL (IQR 1.2 – 2.2)	11.5 sec (IQR 7.9 – 15.9)

HOW to handrub: what is the evidence and what are the knowledge gaps?

HOW to handrub: HH technique, which one to choose?

Reilly JS. et al. Infect Control Hosp Epidemiol.

2016;37:661-6

Fig. 1. Three-step hand hygiene technique.

Tschudin-Setter S. et al. Clin Microbiol Infect. 2017;23:409.e1-409.e4

HOW to handrub:

HH technique, 3-step vs 6-step

A cluster-randomized clinical trial compared the 3-step technique with the WHO 6-step technique

HH compliance

75.9%

65.0%

Adherence to all specified steps T

51.7%

12.7%

Bacterial load reduction ≈

1.60 log₁₀ CFU [IQR 0.54–2.44]

1.67 log₁₀ CFUs [IQR 0.85–2.53]

HOW to handrub: HH technique

Revisiting the WHO "How to Handrub" Hand Hygiene Technique: Fingertips First?

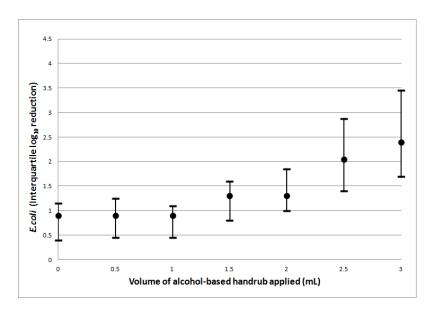
TABLE 1. Reduction of Bacterial Counts From Mean Baseline Values Depending on the Sequence of the Hand-Rubbing Technique^a

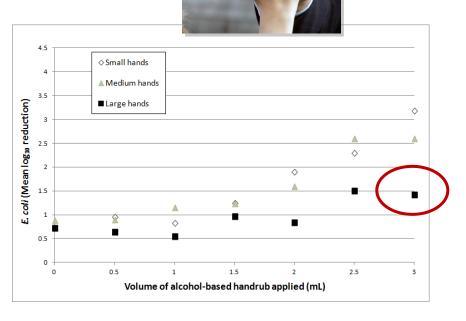
		•	WHO "Fingertips First" Techniqu	
	(n = 16)	(n = 16)	(n=16)	P Value
Globally	$6.18\ (\pm0.86,\ 6.35)$	$2.68 (\pm 1.48, 2.85)$	$3.44 (\pm 1.33, 3.20)$	<.001 ^b
By hand size				
Small	$5.30 \ (\pm 0.85, 5.3)$	$3.40 \ (\pm 1.83, 3.40)$	$3.95 (\pm 1.84, 4.25)$	<.001°
Medium	$6.22 (\pm 0.80, 6.4)$	$2.57 (\pm 1.62, 3.05)$	$3.10 (\pm 1.59, 2.70)$	<.001
Large	$6.73 \ (\pm 0.42, 6.7)$	$2.30 \ (\pm 1.17, \ 2.05)$	$3.45 \ (\pm 0.60, \ 3.35)$.001

^aData are \log_{10} values shown as mean (\pm SD, median).

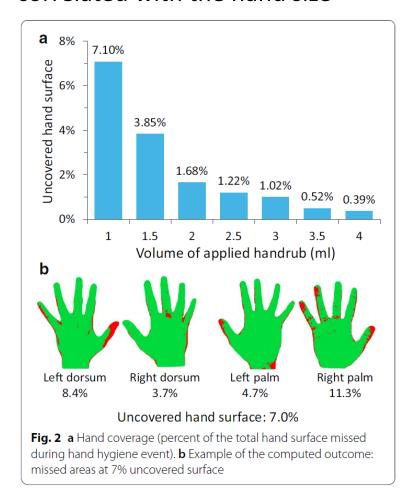
^cFrom a mixed linear model with a random effect on the intercept and an interaction between the sequence and hand size category.

^bFrom a mixed linear model with a random effect on the intercept.

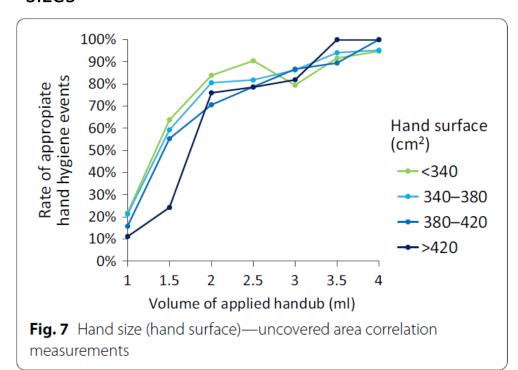

HOW to handrub: what is the evidence and what are the knowledge gaps?


HOW to handrub: volume of ABHR

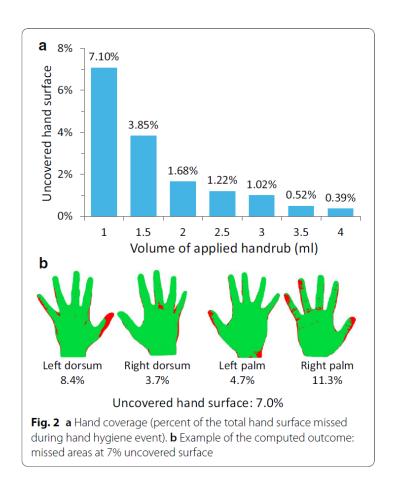
Should Alcohol-Based Handrub Use Be Customized to Healthcare Workers' Hand Size?

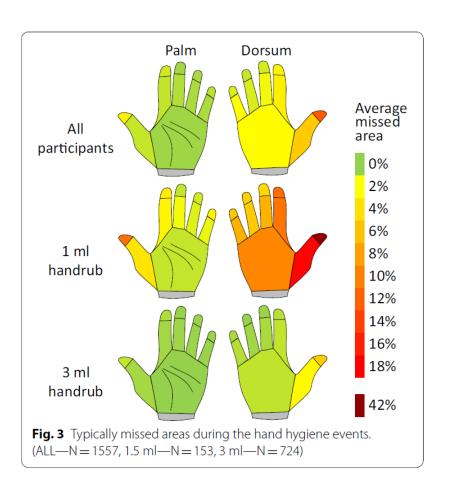

Bacterial reduction on HCWs hands according to the **volume of ABHR**

Bacterial reduction on HCWs hands according to hand size categories and the volume of ABHR


HOW to handrub: volume of ABHR

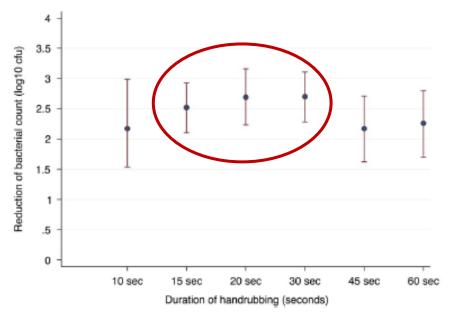
The rate of hand coverage is affected by ABHR volume used and strongly correlated with the hand size




In most HH events, a 3 ml ABHR volume is adequate for coverage of different hand sizes

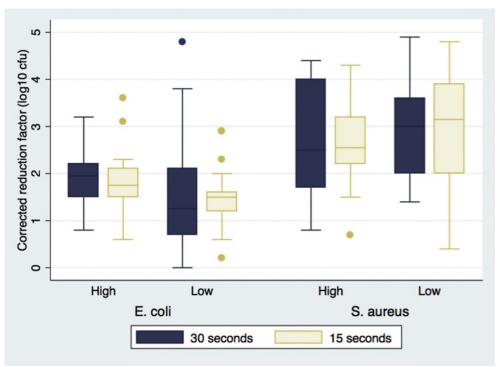
HOW to handrub: volume of ABHR

The rate of hand coverage is affected by ABHR volume used and strongly correlated to the hand size



HOW to handrub: what is the evidence and what are the knowledge gaps?

Hand Hygiene With Alcohol-Based Hand Rub: How Long Is Long Enough?


Bacterial log₁₀ reduction (mean and 95% CI) from baseline across the 6 durations of hand friction

If we consider the non-inferiority limit of 0.6 log (EN 1500):

15 sec is non-inferior to 30 sec

With hand-size customized volumes of ABHR, HH actions have been tested on experienced HCWs (N:18) for different durations (15 secs vs 30 secs), bacteria (*S.aureus* and *E. coli*), and loads (10⁸ or 10⁶ CFU/mL)

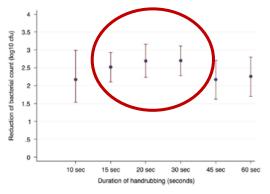
*The non-inferiority limit of 0.6 log (EN 1500)

15 sec is non-inferior* to 30 sec for reducing bacterial load regardless of the type of the bacteria or bacterial load

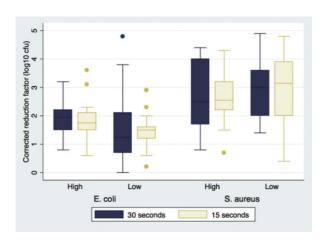
TABLE 2. Log Reduction Factors of Commercially Available and WHO-Recommended ABHRs Within 15 Seconds Compared to the EN 1500 Reference Alcohol at 30 Seconds After Artificial Contamination With Eschericha coli K12

	Log Reduction	Factor ± SD
Formulation (% w/w)	Test Product	Reference ^a
Ethanol (70.0)	4.4 ± 1.04	4.0 ± 0.53
Ethanol (80.0), H_2O_2 (0.1) ^b	4.1 ± 0.60	4.4 ± 0.57
Ethanol (45.0), propan-1-ol (18.0)	4.5 ± 0.77	4.7 ± 0.94
Ethanol (54.0), propan-1-ol (10.0)	4.8 ± 0.69^{c}	4.5 ± 0.77
Ethanol (15.0), propan-1-ol (55.0)	4.4 ± 0.80	4.4 ± 0.75
Ethanol (73.4), propan-2-ol (10.0)	$4.7 \pm 0.66^{\circ}$	3.8 ± 0.77
Propan-2-ol (70.0), H ₂ O ₂ (0.1) b	$4.9 \pm 0.80^{\circ}$	4.5 ± 0.70
Propan-1-ol (30.0), propan-2-ol (45.0), mecetroniumetile sulfate (0.2)	5.2 ± 0.62^{c}	5.1 ± 0.63
Propan-1-ol (14.3), propan-2-ol (63.14)	4.8 ± 0.55	4.5 ± 0.72

No difference between 15 and 30 sec



Laboratory and clinical studies have found that:


-The 15-second application time of ABHR is not inferior* to 30-second

- It is not affected by different ABHR formulations, the type of bacteria or

bacterial load

Bacterial \log_{10} reduction (mean and 95% CI) from baseline across the 6 durations of hand friction

Pires D, et al. Infect Control Hosp Epidemiol. 2017;38:547-52 Pires D, et al. Clin Microbiol Infect 2019;25:851-6 Kramer A et al. Infect Control Hosp Epidemiol 2017; 38: 1430-34

A clinical trial also showed an increase in HH compliance in the 15-second application time group in addition to its non-inferiority

Harnoss JC, et al. J Hosp infect 2020; 104:419-24

^{*}The non-inferiority limit of 0.6 log (EN 1500)

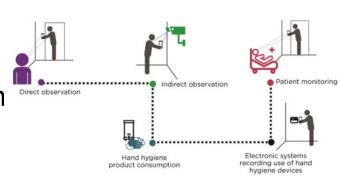
Outline

- How has hygiene literature evolved over the years?
- What about the "HOW to handrub"?
- How can improve hand hygiene monitoring?
 - Recent advances and persisting knowledge gaps

WHO Hand Hygiene improvement Multimodal Strategy

HH monitoring is part of component 3

HH Monitoring


Direct observation- the gold standard for monitoring HH adherence with some limitations:

- -The Hawthorne effect, insufficient sampling, time-consuming, expensive
- Difficulty benchmarking between HCF
- No standardization

Electronic monitoring systems (EMS) have been proposed to overcome these limitation

BMJ Qual Saf 2014

Hawthorne effect on HH adherence

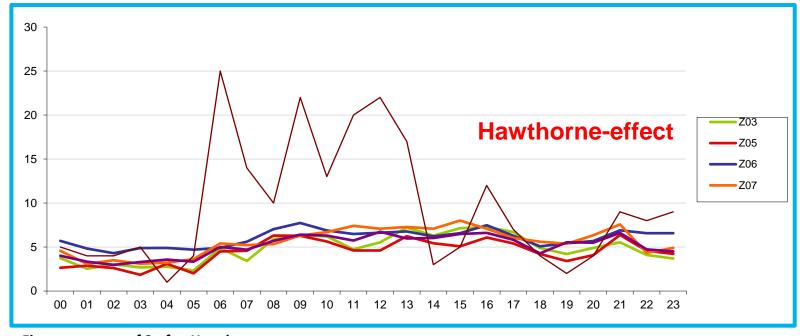
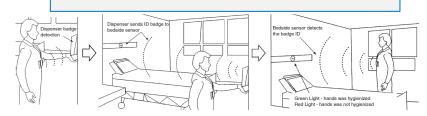


Figure courtesy of Stefan Hagel

A study on ICU comparing HH events (HHE) recorded either electronically (ER) or by direct observation (DO) showed:

- A strong positive correlation between DO compliance and ER HHEs (p<.0001)
- A marked influence of the Hawthorne effect on HH performance

Hand hygiene quality monitoring


Continuous volume and duration measure and feedback

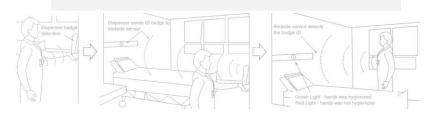
What are other ways to perform HH monitoring?

Video-based surveillance

Monitoring network systems

Wall mounted or individual dispensers

Hand hygiene quality monitoring


Continuous volume and duration measure and feedback

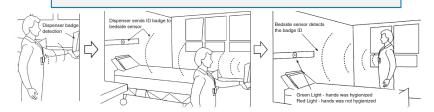
What are other ways to perform hand hygiene monitoring?

Video-based surveillance

Monitoring network systems

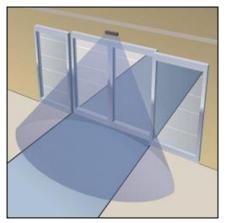
Wall mounted or individual dispensers

Hand hygiene quality monitoring


Continuous volume and duration measure and feedback

What are other ways to perform hand hygiene monitoring?

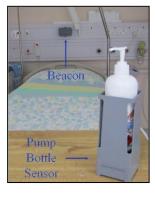
Video-based surveillance

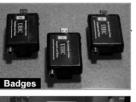

Monitoring network systems

Wall mounted or individual dispensers

Monitoring network systems

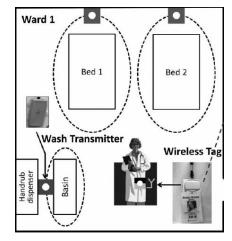
Motion detectors and light beams

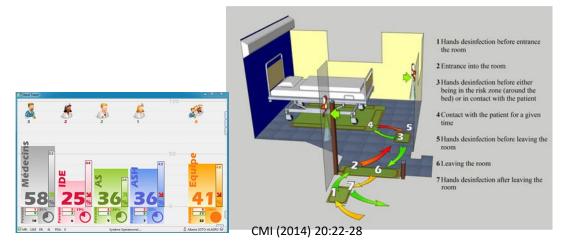

Crit Care Med (2004) 32:358-363


Am J Inf Control (2007)36:199-205 Am J Inf Control (2012);40:320-323

Detectors of alcohol vapor

J Hosp Infect (2010) 76:354–372 J Hosp Infect (2014) 88:84-88




Radio frequency Wireless radio motes

BMC Infect Dis (2011);11:151 CMI (2014);20(1):22-8 Am J Inf Control 2014;42(6):608-11 ICHE (2010) 31:1294–1297 ICHE (2012) 33:689-95. ICHE (2012);33:1259-1261. J Infect Dis (2012);206:1549-57.

Ultrasound

ICHE (2013);34(9):919-928 ICHE (2014);35(11):1336-41 BMJ Qual Saf 2014;23:974–980

Hand hygiene quality monitoring


Continuous volume and duration measure and feedback

What are other ways to perform hand hygiene monitoring?

Video-based surveillance

Monitoring network systems

Wall mounted or individual dispensers

Hand hygiene quality monitoring

Volume & duration monitoring and feedback

Hand coverage Ultraviolet scan

Duration gaz sensor

Technique Video measurement

HH quality monitoring

Nevertheless,
Ne significantly

SETTIN 43/LOCATIONS

Geriatric hospital of Geneva University Hospitals, Geneva. Switzerland

PRIMARY OUTCOME

Hand hygiene compliance was measured by direct observation before and during the intervention using the World Health Organization guidelines

OR, 1.03; 95% CI, 0.75-1.42; P = 0.85

What is the evidence that electronic monitoring improves HH and reduces HAI?

- Mostly single-site, non-controlled, before-after studies evaluated the impact of EMS on HAI:
 - A trend toward improvement in HH is shown
 - But supporting evidence for HAI reduction is weak
 - Data is limited to only a few current commercially available systems
- Most studies use non-validated surrogate markers of HH and focus on entry and exit of patient rooms
- To demonstrate the benefit of EMS in reducing HAI, more high-quality studies are needed that use validated, system-independent measures of HH and stronger study designs

What is the evidence that electronic monitoring improves HH and reduces HAI?

For further reading:

- McCalla S, et al. Am J Infect Control 2017; 45:492-7
- *McCalla S, et al*. Am J Infect Control 2018; 46:1381-86
- Boyce JM, et al. Infect Control Hosp Epidemiol 2019; 40:741–7
- Leis JA, et al. Clin Infect Dis 2020; 71:e680-5
- Knepper BC, et al. Infect Control Hosp Epidemiol 2020; 41:931–7
- Knudsen AR, et al. J Hosp Infect 2021; 115:71-4

Strengths and challenges of these systems

Strengths	Challenges
Provide large amounts of data by monitoring	Use surrogate indicators: room entry-exit or
continuously HH actions	dispenser activation
Less biases measures of HH compliance	Deficit in identification of WHO's 5 Moments
Lower Hawthorne effect	Most of the systems cannot differentiate who access the dispenser (HCWs, patient or visitors)
Some provide automatic analysis of data	Before installation accuracy and validity need to be tested at the HCF
Some can monitor and help to improve the quality of the HH action	Concerns of HCWs: privacy, data accuracy, data processing by the administration (e.g. possible penalties for non-compliance)
Some can provide a continuous real-time feedback and reminder	Costs and infrastructure requirements
Need less human resources	Cost effectiveness

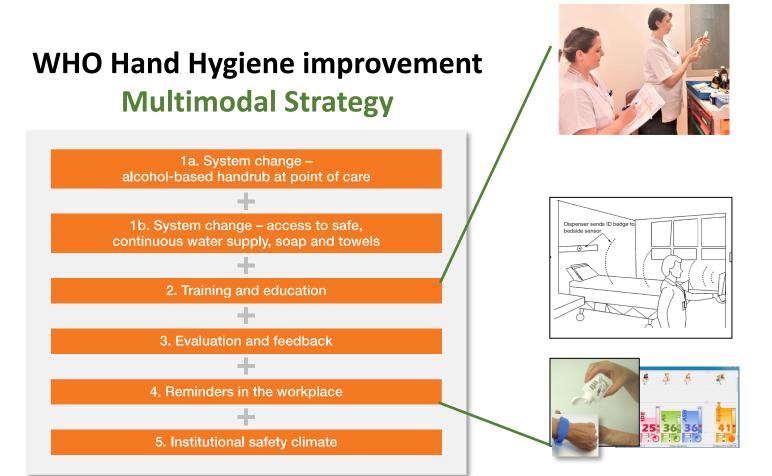
Srigley JA et al, J Hosp Infect 2015;89:51-60
Pires D & Pittet D. Am J Infect Control. 2017;45:464-5
Ward MA et al, Am J Infect Control. 2014;42:472-8

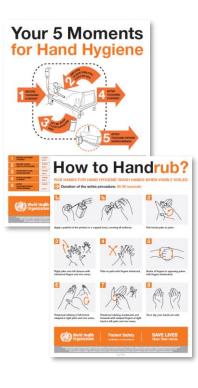
Mckay KJ et al. Infection, Disease and Health 2020;92-100 Boyce JM. Infect Dis N Am. 2021; 553-73

Take home messages

There is a need for:

More evidence-based guidance on "HOW to handrub"


A clinically meaningful threshold to evaluate the "HOW to handrub"


 A strategy to monitor and feedback on the quality of handrub

Take home messages

- Electronic monitoring devices are promising
- The implementation of these systems has been studied as an intervention to improve HH with some successful results
- Electronic monitoring devices need to be integrated in a wider HH improvement strategy
- **Hybrid approaches** might be useful:
- Direct observation promoting positive behavior change and engagement
- The Electronic monitoring systems having the potential to reduce biases associated with data collection by direct observation

So, the future is promising...

Thank you

